Abstract

AbstractIn the previous chapter, a detailed description of the algorithms for the ‘algcurves’ package in Maple was presented. As discussed there, the package is able to handle general algebraic curves with coefficients given as exact arithmetic expressions, a restriction due to the use of exact integer arithmetic. Coefficients in terms of floating point numbers, i.e., the representation of decimal numbers of finite length on a computer, can in principle be handled, but the floating point numbers have to be converted to rational numbers. This can lead to technical difficulties in practice. One also faces limitations if one wants to study families of Riemann surfaces, where the coefficients in the algebraic equation defining the curve are floating point numbers depending on a set of parameters, i.e., if one wants to explore modular properties of Riemann surfaces as in the examples discussed below. An additional problem in this context can be computing time since the computation of the Riemann matrix uses the somewhat slow Maple integration routing. Thus, a more efficient computation of the Riemann matrix is interesting if one wants to study families of Riemann surfaces or higher genus examples which are computationally expensive.KeywordsRiemann SurfaceBranch PointTheta FunctionAlgebraic CurveAlgebraic CurfThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.