Abstract

Let m be a positive integer, q be a prime power, and PG(2,q) be the projective plane over the finite field \({\mathbb{F}_q}\). Finding complete m-arcs in PG(2,q) of size less than q is a classical problem in finite geometry. In this paper we give a complete answer to this problem when q is relatively large compared with m, explicitly constructing the smallest m-arcs in the literature so far for any m ≥ 8. For any fixed m, our arcs \({{\cal A}_{q,m}}\) satisfy \(\left| {{{\cal A}_{q,m}}} \right| - q \to - \infty \) as q grows. To produce such m-arcs, we develop a Galois theoretical machinery that allows the transfer of geometric information of points external to the arc, to arithmetic one, which in turn allows to prove the m-completeness of the arc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.