Abstract

Essential matrix averaging, i.e., the task of recovering camera locations and orientations in calibrated, multiview settings, is a first step in global approaches to Euclidean structure from motion. A common approach to essential matrix averaging is to separately solve for camera orientations and subsequently for camera positions. This paper presents a novel approach that solves simultaneously for both camera orientations and positions. We offer a complete characterization of the algebraic conditions that enable a unique Euclidean reconstruction of $n$ cameras from a collection of $(^n_2)$ essential matrices. We next use these conditions to formulate essential matrix averaging as a constrained optimization problem, allowing us to recover a consistent set of essential matrices given a (possibly partial) set of measured essential matrices computed independently for pairs of images. We finally use the recovered essential matrices to determine the global positions and orientations of the $n$ cameras. We test our method on common SfM datasets, demonstrating high accuracy while maintaining efficiency and robustness, compared to existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.