Abstract
A new algebraic Cayley graph is constructed using finite fields. It provides a more flexible source of expander graphs. Its connectedness, the number of connected components, and diameter bound are studied via Weil's estimate for character sums. Furthermore, we study the algorithmic problem of computing the number of connected components and establish a link to the integer factorization problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.