Abstract

AbstractThe Paving Conjecture in operator theory and the Feichtinger Conjecture in frame theory are both problems that are equivalent to the Kadison-Singer problem concerning extensions of pure states. In all three problems, one of the difficulties is that the natural multiplicative structure appears to be incompatible — the unique extension problem of Kadison-Singer is compatible with a linear subspace, but not a subalgebra; likewise, the pavable operators is known to be a linear subspace but not a subalgebra; the Feichtinger Conjecture does not even have a linear structure. The Paving Conjecture and the Feichtinger Conjecture both have special cases in terms of exponentials in L2[0, 1]. We introduce convolution as a multiplication to demonstrate a possible attack for these special cases.KeywordsKadison-Singer ProblemPavingLaurent operatorframeMathematics Subject Classification (2000)Primary: 46L99Secondary 46B9942B35

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.