Abstract

AbstractRelational program derivation is the technique of stepwise refining a relational specification to a program by algebraic rules. The program thus obtained is correct by construction. Meanwhile, dependent type theory is rich enough to express various correctness properties to be verified by the type checker. We have developed a library, AoPA (Algebra of Programming in Agda), to encode relational derivations in the dependently typed programming language Agda. A program is coupled with an algebraic derivation whose correctness is guaranteed by the type system. Two non-trivial examples are presented: an optimisation problem and a derivation of quicksort in which well-founded recursion is used to model terminating hylomorphisms in a language with inductive types.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.