Abstract
Descartes' “multiplicative” theory of equations in the Géométrie (1637) systematically treats equations as polynomials set equal to zero, bringing out relations between equations, roots, and polynomial factors. We here consider this theory as a response to Peter Roth's suggestions in Arithmetica Philosophica (1608), notably in his “seventh-degree” problem set. These specimens of arithmetic-masterly problem design develop skills with multiplicative and other degree-independent techniques. The challenges were fine-tuned by introducing errors disguised as printing errors. During Descartes' visit to Germany in 1619–1622, he probably worked with Johann Faulhaber (1580–1635) on these problems; they are discussed in Faulhaber's Miracula Arithmetica (1622), which also looks forward to fuller publication, probably by Descartes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.