Abstract

We study connections among polynomials, differential equations and streams over a field 𝕂, in terms of algebra and coalgebra. We first introduce the class of (F,G)-products on streams, those where the stream derivative of a product can be expressed as a polynomial of the streams themselves and their derivatives. Our first result is that, for every (F,G)-product, there is a canonical way to construct a transition function on polynomials such that the induced unique final coalgebra morphism from polynomials into streams is the (unique) 𝕂-algebra homomorphism - and vice-versa. This implies one can reason algebraically on streams, via their polynomial representation. We apply this result to obtain an algebraic-geometric decision algorithm for polynomial stream equivalence, for an underlying generic (F,G)-product. As an example of reasoning on streams, we focus on specific products (convolution, shuffle, Hadamard) and show how to obtain closed forms of algebraic generating functions of combinatorial sequences, as well as solutions of nonlinear ordinary differential equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.