Abstract

We report on optical studies of exciton localization and recombination kinetics in two single 2.2 nm thick AlxGa1-xN/Alx+0.1Ga0.9-xN quantum well structures (x = 0.55 and 0.6) grown by plasma assisted molecular beam epitaxy on a c-sapphire substrate. Strong localization potential inherent for both the quantum well and barrier regions results in merging of the quantum well and barrier emission spectra into a single broad line centered at 285 nm (x = 0.55) and 275 nm (x = 0.6). Time-resolved photoluminescence measurements revealed surprising temperature stability of the photoluminescence decay time constant (approximate to 400 ps) relevant to the recombination of the quantum well localized excitons. This observation implies nearly constant quantum efficiency of the quantum well emission in the whole range from 4.6 to 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.