Abstract

In this study, AlGaN/GaN two-dimensional electron gas (2DEG) heterostructures were grown by metal organic chemical vapor deposition (MOCVD). It was found that we could reduce reverse leakage current and provide high-voltage operation by introducing multiple MgxNy/GaN layers into the conventional Schottky barrier photodiodes (SBPD). An atomic force microscopy (AFM) scan image showed that surface pits of TD terminations were hardly observed as the multiple MgxNy/GaN layers were grown before subsequently depositing a high-temperature (HT) AlGaN/GaN epitaxial layer. A larger Schottky barrier height (ΦB) and smaller ideality factor (n) extracted from the current–voltage (I–V) curve for SBPD with multiple MgxNy/GaN layers also suggested that better crystal quality and rectifying properties were achieved. The larger value of ΦB might be explained by the reduction of the TD density and interface state (IS) density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.