Abstract

A systematic study of GaN-based heterostructure field-effect transistors with an insulating carbon-doped GaN back barrier for high-voltage operation is presented. The impact of variations of carbon doping concentration, GaN channel thickness, and substrates is evaluated. Tradeoff considerations in on-state resistance versus current collapse are addressed. Suppression of the off-state subthreshold drain-leakage currents enables a breakdown voltage enhancement of over 1000 V with a low on-state resistance. Devices with a 5-μm gate-drain separation on semi-insulating SiC and a 7-μm gate-drain separation on n-SiC exhibit 938 V and 0.39 mΩ·cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and 942 V and 0.39 m Ω·cmcm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively. A power device figure of merit of ~ 2.3 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> V <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Ω·cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> was calculated for these devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.