Abstract

The present study examined the cholesterol-lowering activity of sterol extract (SE) derived from alga Schizochytrium sp. and its interaction with gene expression of transporters, receptors, and enzymes involved in cholesterol absorption and metabolism. GC-MS analyses found that SE was a mixture of various sterols including lathosterol, ergosterol, stigmasterol, 24-ethylcholesta-5,7,22-trienol, stigmasta-7,24(24(1))-dien-3β-ol, and cholesterol. Results showed that SE at doses of 0.06 and 0.30 g/kg diet were able to decrease plasma cholesterol concentration by 19.5 and 34%, respectively, compared with the control, in hamsters maintained on a 0.1% high-cholesterol diet. SE at a dose of 0.30 g/kg diet was as effective as β-sitosterol in reducing plasma total cholesterol (TC). SE-induced reduction in plasma TC was accompanied by down-regulation of intestinal acyl-CoA:cholesterol acyltransferase 2 (ACAT2) and hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and up-regulation of hepatic low-density lipoprotein (LDL) receptor. Addition of SE to the diet increased the excretion of total fecal sterols. It was concluded that SE possessed the same cholesterol-lowering activity as β-sitosterol and the underlying mechanisms were mediated by increasing sterol excretion and decreasing cholesterol absorption and synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call