Abstract

A microcosm nutrient limitation experiment was conducted in the Åkerberg pit lake, located in Västerbotten, northern Sweden, in the summer of 2018. The microcosms were fertilized with N, P and N and P in combination. Chlorophyll-a concentrations were used to estimate algal growth. Filtered and suspended metal concentrations of the microcosms were compared to see if an increase in algal growth would lead to higher metal uptake. The results show that the microcosms fertilized with N and P had the highest chlorophyll-a concentrations (3–3.4 μg/l). This corresponds to an increase of 9.5–11 times compared to the initial chlorophyll-a concentrations, suggesting that the lake is nutrient poor with regards to both N and P. An increase of the metal concentration in the suspended particulate samples (>0.2 μm) of the microcosms fertilized with both N and P could be observed particularly for the mining-related metals Cd, Co, Ni, and Zn. The uptake of these metals amounted to 2.5–20% (Cd), 2.6–14% (Co), 0.87–1.8% (Ni), and 19–64% (Zn) of their filtered concentrations (<0.2 μm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.