Abstract

Environmental pollution and global warming are major threats to life on Earth. These drastic changes are caused by carbon dioxide emission, which has become a very serious problem worldwide. For the generation of useful sustainable and renewable energy in an efficient manner, the production of electricity using solar energy trapped by algae in combination with microbial fuel cells (MFCs) is a very attractive option. The use of different kinds of algae has become a recent research trend, especially because algae have great capacity to utilize carbon dioxide via photosynthesis, with the potential to convert it into a biomass. Integrating algae into MFCs has given rise to a new MFC model, that of photosynthetic MFCs. Algal MFCs play an extensive role in the treatment of organic contaminants that can be converted to bioelectricity and they also efficiently remove various by-products. This chapter provides- detailed descriptions of the basic experimental setup of MFCs, and the electrode materials used for anodes, cathodes, and membranes. Microbial fuel cells employing different types of algae as substrates under various conditions are described in detail. A brief description of special MFC designs that are integrated with PBR is given. Details of MFC models with algae-assisted anodes and cathodes are also supplied. The multiple bioreactor constructions that are employed to yield algal biomasses are discussed, along with the technologies that will have to be developed. Future challenges and perspectives are highlighted, and we describe research work that can be applied for the commercialization of algal MFCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call