Abstract

FeII/α-ketoglutarate-dependent dioxygenases (Fe/αKG) make up a large enzyme family that functionalize C-H bonds on diverse organic substrates. Although Fe/αKG homologues catalyze an array of chemically useful reactions, hydroxylation typically predominates. Microalgal DabC uniquely forms a novel C-C bond to construct the bioactive pyrrolidine ring in domoic acid biosynthesis; however, we have identified that this kainoid synthase exclusively performs a stereospecific hydroxylation reaction on its cis substrate regioisomer. Mechanistic and kinetic analyses with native and alternative substrates identified a 20-fold rate increase in DabC radical cyclization over β-hydroxylation with no observable 1,5-hydrogen atom transfer. Moreover, this dual activity was conserved among macroalgal RadC1 and KabC homologues and provided insight into substrate recognition and reactivity trends. Investigation of this substrate-dependent chemistry improves our understanding of kainoid synthases and their biocatalytic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.