Abstract

Zinc oxide nanoparticles (ZnO-NPs) possess unique properties, making them a popular material across various industries. However, traditional methods of synthesizing ZnO-NPs are associated with environmental and health risks due to the use of harmful chemicals. As a result, the development of eco-friendly manufacturing practices, such as green-synthesis methodologies, has gained momentum. Green synthesis of ZnO-NPs using biological substrates offers several advantages over conventional approaches, such as cost-effectiveness, simplicity of scaling up, and reduced environmental impact. While both dried dead and living biomasses can be used for synthesis, the extracellular mode is more commonly employed. Although several biological substrates have been successfully utilized for the green production of ZnO-NPs, large-scale production remains challenging due to the complexity of biological extracts. In addition, ZnO-NPs have significant potential for photocatalysis and adsorption in the remediation of industrial effluents. The ease of use, efficacy, quick oxidation, cost-effectiveness, and reduced synthesis of harmful byproducts make them a promising tool in this field. This review aims to describe the different biological substrate sources and technologies used in the green synthesis of ZnO-NPs and their impact on properties. Traditional synthesis methods using harmful chemicals limit their clinical field of use. However, the emergence of algae as a promising substrate for creating safe, biocompatible, non-toxic, economic, and ecological synthesis techniques is gaining momentum. Future research is required to explore the potential of other algae species for biogenic synthesis. Moreover, this review focuses on how green synthesis of ZnO-NPs using biological substrates offers a viable alternative to traditional methods. Moreover, the use of these nanoparticles for industrial-effluent remediation is a promising field for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.