Abstract
In this work, a cooperative algal-bacterial system that efficiently degrades thiocyanate (SCN(-)), a toxic contaminant, and exhibits high lipid productivity, was developed. A consortium of mixed bacteria (activated sludge) and microalgae was sequentially cultivated under photoautotrophic and photoheterotrophic modes. The hydrolysis of SCN(-) to ammonium (NH4(+))-nitrogen and subsequent nitrification steps were performed by the initial activated sludge under lithoautotrophic conditions. The NH4(+) and oxidized forms of nitrogen, nitrite (NO2(-)) and nitrate (NO3(-)), were then assimilated and removed by the microalgal cells when light was supplied. After the degradation of SCN(-), the cultivation mode was changed to photoheterotrophic conditions in a sequential manner. Algal-bacterial cultures containing Chlorella protothecoides and Ettlia sp. yielded significantly increased lipid productivity under photoheterotrophic conditions compared to photoautotrophic conditions (28.7- and 17.3-fold higher, respectively). Statistical methodologies were also used to investigate the effects of volatile fatty acids and yeast extract on biomass and lipid production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.