Abstract

This study aimed to determine the efficacy of dietary algae-derived polysaccharides (ADPs) from Enteromorpha on growth performance, intestinal morphology, intestinal permeability, and antioxidant capacity in serum, liver, and intestinal mucosa of broilers. Three hundred and ninety six day-old male chicks were randomly assigned to six dietary treatments containing 0 (Control), 1,000, 2,500, 4,000, 5,500, and 7,000 mg ADP/kg basal diet in a 35 day feeding trial. During day 1–21, compared with the control group, dietary 1,000–7,000 mg/kg ADP supplementation improved the average daily gain (ADG) and feed conversion ratio (p < 0.05). Overall (day 1–35), dietary inclusion of 1,000 mg/kg ADP increased the final body weight and ADG (p < 0.05). Besides, on day 21, dietary 2,500 mg/kg ADP supplementation increased the serum catalase (CAT) and liver total superoxide dismutase (T-SOD) activities (p < 0.05), whereas dietary 1,000–5,500 mg/kg ADP supplementation decreased malondialdehyde (MDA) contents in serum and liver (p < 0.05). On day 35, supplementation of 1,000 mg/kg ADP increased the serum glutathione peroxidase and CAT activities and liver T-SOD activities (p < 0.05). It decreased the MDA level of serum and liver (p < 0.05). Also, dietary 2,500 mg/kg ADP increased the villus height of jejunum and ileum on day 21 (p < 0.05), and dietary 4,000 mg/kg ADP increased the villus height of duodenum and ileum on day 35 (p < 0.05). On day 21, dietary 4,000 mg/kg ADP increased the CAT activities of the duodenum and T-SOD activities of jejunum and ileum and decreased the MDA contents in the duodenum, jejunum, and ileum (p < 0.05). On day 35, dietary inclusion of 1,000–7,000 mg/kg ADP reduced MDA contents of duodenum and jejunum (p < 0.05). Furthermore, dietary inclusion of ADP at 1,000–7,000 mg/kg decreased serum DAO activities at day 21 and day 35 (p < 0.05), and the serum D-lactic acid concentration was reduced by dietary supplementation of 1,000, 2,500, and 7,000 mg/kg ADP on day 21. In conclusion, dietary ADP exerted beneficial effects on growth performance, antioxidant capacity, and gut health in broilers; based on the studied parameters, the appropriate recommended dose is 1,000–4,000 mg/kg. These findings provided new insights into the potential application of ADP as natural growth promoters in broilers.

Highlights

  • Due to restrictions or regulations on the use of antibiotic growth promoters in poultry production, there is an increasing demand for alternatives to antibiotic growth promoters like natural bioactive compounds to maintain the health and productivity of broilers [1,2,3]

  • The findings of the present study indicated that the inclusion of dietary algae-derived polysaccharides (ADPs) could promote the growth performance of broiler chickens

  • Park et al [33] reported that the inclusion of COS in drinking water could enhance the antioxidant capacity of broilers, and the present study found that the ADP supplementation improves serum SOD and liver CAT activities with a reduction in serum and liver MDA contents, which is similar to the finding in laying hens by Guo et al [16]

Read more

Summary

Introduction

Due to restrictions or regulations on the use of antibiotic growth promoters in poultry production, there is an increasing demand for alternatives to antibiotic growth promoters like natural bioactive compounds to maintain the health and productivity of broilers [1,2,3]. Natural polysaccharides, which are widely distributed in the microorganisms and plants, can improve an animal’s gut health [4]. Numerous studies found that the natural polysaccharides derived from plants and fungus could be used as prebiotics to improve gut microflora balance and barrier function, promoting the growth of broiler chickens [5,6,7,8]. These natural and functional polysaccharides could replace antibiotics in the poultry industry. Marine polysaccharides have attracted considerable interest in the feed industry due to their biological activities [8, 11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.