Abstract

In this paper, we present an approach for predicting algae growth through the selection of influential environmental variables. Chlorophyll a is considered to be an indicator for algal biomass and we predict this as a proxy for algae growth. Environmental variables like water temperature, salinity, etc. have influence upon algae growth. Depending on the geographic location, the influence of these environmental variables will vary. Given a set of relevant environmental variables we perform feature selection using a number of algorithms to identify the variables relevant to the growth. We have developed an influence matrix-based approach to select the relevant features. The selected features are then used for predicting algae growth using different regression algorithms to identify their relative strength. The approach is tested on the algae data of Derwent estuary in Tasmania. The experimental results demonstrate that the accuracy of algae growth prediction with influence matrix-based feature selection is superior to using all the features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.