Abstract
To understand the mechanism of dark abiotic mercury (Hg) methylation by algae-derived dissolved organic matter (DOM) and effectively manage the environmental risks of mercury methylation in aquaculture areas, we investigated the influence of subfractions of DOM released from algae (Ulothrix sp.) decomposition on mercury methylation. The results showed that the hydrophobic basic component (HOB) in DOM exhibited the most substantial promotion effect on Hg methylation. The methylmercury (MeHg) production in the HOB treatment increased significantly, while the production rate of MeHg (%MeHg represented the concentration ratio of MeHg to THg) in the six subfractions treated solutions decreased significantly with the increase of Hg concentration. The change of the %MeHg was more evident at low Hg concentration, indicating the limited number of binding sites and methyl donors on DOM. As a consequence, Hg(Ⅱ) in the solution could not be converted into MeHg in equal proportion. Furthermore, the production of MeHg in solution was significantly reduced by the decomposed algae DOM, and its concentration was in the range of 0.017–0.085 ng·L−1 (significantly lower than undecomposed algal). The difference between the decomposed and the non-decomposed algae DOM reached a significant level (P < 0.05). When the DOM decayed for 20 and 30 days, the Hg methylation ability of DOM was weakened most obviously. During the decomposition process, considerable variations were observed among the subfractions, with HOB consistently playing a dominant role in Hg methylation. At the same time, the hydrophilic acid component exhibited a significant inhibitory effect on Hg methylation. Generally, the main components (e.g. HOB and HIA (hydrophilic acid component)) of DOM affecting mercury methylation were found in our study, which provided a better understanding of algae-derived DOM subfractions on the Hg methylation, in an attempt to prevent and control water pollution in aquaculture areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.