Abstract

Series solutions are used to explore the mode conversion of slow, Alfvén and fast magnetohydrodynamic waves injected at the base of a two-isothermal-layer stratified atmosphere with a uniform magnetic field, crudely representing the solar chromosphere and corona with intervening discontinuous transition region. This sets a baseline for understanding the ubiquitous Alfvénic waves observed in the corona, which are implicated in coronal heating and solar wind acceleration. It is found that all three injected wave types can partially transmit as coronal Alfvén waves in varying proportions dependent on frequency, magnetic field inclination, wave orientation, and distance between the Alfvén/acoustic equipartition level and the transition region. However, net Alfvénic transmission is limited for plausible parameters, and additional magnetic field structuring may be required to provide sufficient wave energy flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call