Abstract

The United States Food and Drug Administration (FDA) uses alfuzosin as an example of a drug having QT risk in humans that was not detected in nonclinical studies. FDA approval required a thorough clinical QT study (TCQS) that was weakly positive at high doses. The FDA has used the clinical/nonclinical discordance as a basis for mandatory TCQS, and this requirement has serious consequences for drug development. For this reason, we re-examined whether nonclinical signals of QT risk for alfuzosin were truly absent. Alfuzosin significantly prolonged action potential duration (APD)(60) in rabbit Purkinje fibers (p < 0.05) and QT in isolated rabbit hearts (p < 0.05) at the clinically relevant concentration of 300 nM. In man, the QT interval corrected with Fridericia's formula increased 7.7 ms, which exceeds the 5.0-ms threshold for a positive TCQS. Effects on hK(v)11.1, hK(v)4.3, and hK(v)7.1/hKCNE1 potassium currents and calcium current were not involved. At 300 nM, approximately 30x C(max), alfuzosin significantly increased whole-cell peak sodium (hNa(v)1.5) current (p < 0.05), increased the probability of late hNa(v)1.5 single-channel openings, and significantly shortened the slow time constant for recovery from inactivation. Alfuzosin also increased hNa(v)1.5 burst duration and number of openings per burst between 2- and 3-fold. Alfuzosin is a rare example of a non-antiarrhythmic drug that delays cardiac repolarization not by blocking hK(v)11.1 potassium current, but by increasing sodium current. Nonclinical studies clearly show that alfuzosin increases plateau potential and prolongs APD and QT, consistent with QT prolongation in man. The results challenge the FDA grounds for the absolute primacy of TCQS based on the claim of a false-negative, nonclinical study on alfuzosin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.