Abstract
SummaryHarmonizing quality control (QC) of large-scale second and third-generation sequencing datasets is key for enabling downstream computational and biological analyses. We present Alfred, an efficient and versatile command-line application that computes multi-sample QC metrics in a read-group aware manner, across a wide variety of sequencing assays and technologies. In addition to standard QC metrics such as GC bias, base composition, insert size and sequencing coverage distributions it supports haplotype-aware and allele-specific feature counting and feature annotation. The versatility of Alfred allows for easy pipeline integration in high-throughput settings, including DNA sequencing facilities and large-scale research initiatives, enabling continuous monitoring of sequence data quality and characteristics across samples. Alfred supports haplo-tagging of BAM/CRAM files to conduct haplotype-resolved analyses in conjunction with a variety of next-generation sequencing based assays. Alfred’s companion web application enables interactive exploration of results and comparison to public datasets.Availability and implementationAlfred is open-source and freely available at https://tobiasrausch.com/alfred/.Supplementary information Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.