Abstract

Anesthetics have varying physiological effects, but most notably alter ion channel kinetics. Alfaxalone is a rapid induction and washout neuroactive anesthetic, which potentiates γ-aminobutyric acid (GABA)-activated GABAA receptor (GABAA-R) currents. This study aims to identify any long-term effects of alfaxalone sedation on pyramidal neuron action potential and GABAA-R properties, to determine if its impact on neuronal function can be reversed in a sufficiently short timeframe to allow for same-day electrophysiological studies in goldfish brain. The goldfish (Carassius auratus) is an anoxia-tolerant vertebrate and is a useful model to study anoxia tolerance mechanisms. The results show that alfaxalone sedation did not significantly impact action potential properties. Additionally, the acute application of alfaxalone onto naive brain slices caused the potentiation of whole-cell GABAA-R current decay time and area under the curve. Following whole-animal sedation with alfaxalone, a 3-h wash of brain slices in alfaxalone-free saline, with saline exchanged every 30 min, was required to remove any potentiating impact of alfaxalone on GABAA-R whole-cell currents. These results demonstrate that alfaxalone is an effective anesthetic for same-day electrophysiological experiments with goldfish brain slices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call