Abstract

The purpose of this paper is to develop an effective methodology for solving constrained matrix games with payoffs of trapezoidal fuzzy numbers (TrFNs), which are a type of two-person non-cooperative games with payoffs expressed by TrFNs and players' strategies being constrained. In this methodology, it is proven that any Alfa-constrained matrix game has an interval-type value and hereby any constrained matrix game with payoffs of TrFNs has a TrFN-type value. The auxiliary linear programming models are derived to compute the interval-type value of any Alfa-constrained matrix game and players' optimal strategies. Thereby the TrFN-type value of any constrained matrix game with payoffs of TrFNs can be directly obtained through solving the derived four linear programming models with data taken from only 1-cut and 0-cut of TrFN-type payoffs. Validity and applicability of the models and method proposed in this paper are demonstrated with a numerical example of the market share game problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.