Abstract
Alexander polynomials of sextics are computed in the case of sextics with only simple singularities or sextics of torus type with arbitrary singularities. We will show that for irreducible sextics, there are only 4 possible Alexander polynomials: (t2-t+1)j, j=0,1,2,3. For the computation, we use the method of Libgober and Loeser-Vaquié [5, 7] and the classification result in our previous papers [12, 11].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.