Abstract

Astronomical broker systems, such as Automatic Learning for the Rapid Classification of Events (ALeRCE), are currently analyzing hundreds of thousands of alerts per night, opening up an opportunity to automatically detect anomalous unknown sources. In this work, we present the ALeRCE anomaly detector, composed of three outlier detection algorithms that aim to find transient, periodic, and stochastic anomalous sources within the Zwicky Transient Facility data stream. Our experimental framework consists of cross-validating six anomaly detection algorithms for each of these three classes using the ALeRCE light-curve features. Following the ALeRCE taxonomy, we consider four transient subclasses, five stochastic subclasses, and six periodic subclasses. We evaluate each algorithm by considering each subclass as the anomaly class. For transient and periodic sources the best performance is obtained by a modified version of the deep support vector data description neural network, while for stochastic sources the best results are obtained by calculating the reconstruction error of an autoencoder neural network. Including a visual inspection step for the 10 most promising candidates for each of the 15 ALeRCE subclasses, we detect 31 bogus candidates (i.e., those with photometry or processing issues) and seven potential astrophysical outliers that require follow-up observations for further analysis. 16 16 The code and the data needed to reproduce our results are publicly available at https://github.com/mperezcarrasco/AnomalyALeRCE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.