Abstract
The successful deployment of autonomous real-time systems is contingent on their ability to recover from performance degradation of sensors, actuators, and other electro-mechanical subsystems with low latency. In this article, we introduce ALERA, a novel framework for real-time control law adaptation in nonlinear control systems assisted by system state encodings that generate an error signal when the code properties are violated in the presence of failures. The fundamental contributions of this methodology are twofold—first, we show that the time-domain error signal contains perturbed system parameters’ diagnostic information that can be used for quick control law adaptation to failure conditions and second, this quick adaptation is performed via reinforcement learning algorithms that relearn the control law of the perturbed system from a starting condition dictated by the diagnostic information, thus achieving significantly faster recovery. The fast (up to 80X faster than traditional reinforcement learning paradigms) performance recovery enabled by ALERA is demonstrated on an inverted pendulum balancing problem, a brake-by-wire system, and a self-balancing robot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Intelligent Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.