Abstract

AbstractThe complex physiological environment in bone tissue poses a challenge to the efficient delivery of chemotherapeutic agents for osteosarcoma (OS) treatment; hence, an efficient drug delivery system designed for OS is highly desired. Herein, alendronate (Ale)‐based cationic platinum prodrug nanoparticles (Ale NP) are developed, which exhibit cascade responsiveness to the OS tumor microenvironment. With Ale triggered bone targeting and charge reversal effects, Ale NP demonstrates superior capacity for achieving deep penetration into dense OS tissues. Furthermore, Ale NP can induce dendritic cell (DC) maturation via activation of the cyclic GMP‐AMP synthase‐stimulator of interferon genes (cGAS‐STING) pathway using platinum drugs. The highly potent phenanthridine (Pt(II)) can be released in the presence of overexpressed glutathione (GSH) in tumor cells, thereby achieving dual‐targeted cascade delivery of cationic platinum drugs in OS. Notably, Ale NP not only effectively eliminates the tumor in the internal region of OS but also acts as a potent STING agonist to effectively reverse the suppressive microenvironment of OS. Overall, Ale‐triggered dual‐cascade targeting prodrug nanoparticles significantly improve drug targeting and penetration in OS, hence paving a promising avenue for the clinical treatment of OS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.