Abstract
Osteoporosis (OP) and osteoarthritis (OA) are major health problems in the increasing elderly population, particularly in postmenopausal women, but their relationship remains unclear. The present study investigated whether alendronate (ALN), a potent inhibitor of bone resorption, could protect articular cartilage from degeneration in a combined animal model of OP and OA induced by ovariectomy (OVX). Seventy-eight seven-month-old female Sprague–Dawley rats were assigned into five experimental groups: (1) sham-operated with vehicle treatment, (2) sham-operated with ALN treatment, (3) OVX with vehicle treatment, (4) ALN treatment starting at OVX, and (5) ALN treatment starting at eight weeks after OVX. Histological and micro-CT analyses, together with urine collagen degradation markers, indicated that early ALN treatment completely prevented both subchondral bone loss and cartilage surface erosion induced by OVX. Although late ALN treatment also inhibited subchondral bone loss and significantly reduced cartilage erosion in the OVX rats, these tissues did not completely recover even after 10-weeks of ALN treatment. Quantitative RT-PCR analyses showed that the protective effect of ALN correlated with increased ratio of OPG/RANKL in both subchondral bone and cartilage. Moreover, whereas OVX caused upregulation of expression of matrix metalloproteinases MMP-13 and MMP-9 in the articular cartilage and chondrocytes in the interface between the articular cartilage and subchondral bone, respectively, early ALN treatment blocked whereas late ALN treatment attenuated the upregulation of these catabolic enzymes in the corresponding tissues. Together, these data indicate that the subchondral bone loss plays an important role in OA pathogenesis in the combined OP and OA model and suggest that treatment timing is an important factor for the effectiveness of anti-resorptive drug therapy of combined OP and OA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.