Abstract

In this work we provide an Aleksandrov–Bakelman–Pucci type estimate for a certain class of fully nonlinear elliptic integro-differential equations, the proof of which relies on an appropriate generalization of the convex envelope to a nonlocal, fractional-order setting and on the use of Riesz potentials to interpret second derivatives as fractional order operators. This result applies to a family of equations involving some nondegenerate kernels and, as a consequence, provides some new regularity results for previously untreated equations. Furthermore, this result also gives a new comparison theorem for viscosity solutions of such equations which depends only on the L ∞ and L n norms of the right-hand side, in contrast to previous comparison results which utilize the continuity of the right-hand side for their conclusions. These results appear to be new, even for the linear case of the relevant equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.