Abstract

Objective.In brachytherapy, deep learning (DL) algorithms have shown the capability of predicting 3D dose volumes. The reliability and accuracy of such methodologies remain under scrutiny for prospective clinical applications. This study aims to establish fast DL-based predictive dose algorithms for low-dose rate (LDR) prostate brachytherapy and to evaluate their uncertainty and stability.Approach.Data from 200 prostate patients, treated with125I sources, was collected. The Monte Carlo (MC) ground truth dose volumes were calculated with TOPAS considering the interseed effects and an organ-based material assignment. Two 3D convolutional neural networks, UNet and ResUNet TSE, were trained using the patient geometry and the seed positions as the input data. The dataset was randomly split into training (150), validation (25) and test (25) sets. The aleatoric (associated with the input data) and epistemic (associated with the model) uncertainties of the DL models were assessed.Main results.For the full test set, with respect to the MC reference, the predicted prostateD90metric had mean differences of -0.64% and 0.08% for the UNet and ResUNet TSE models, respectively. In voxel-by-voxel comparisons, the average global dose difference ratio in the [-1%, 1%] range included 91.0% and 93.0% of voxels for the UNet and the ResUNet TSE, respectively. One forward pass or prediction took 4 ms for a 3D dose volume of 2.56 M voxels (128 × 160 × 128). The ResUNet TSE model closely encoded the well-known physics of the problem as seen in a set of uncertainty maps. The ResUNet TSE rectum D2cchad the largest uncertainty metric of 0.0042.Significance.The proposed DL models serve as rapid dose predictors that consider the patient anatomy and interseed attenuation effects. The derived uncertainty is interpretable, highlighting areas where DL models may struggle to provide accurate estimations. The uncertainty analysis offers a comprehensive evaluation tool for dose predictor model assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.