Abstract

Aldosterone regulates Na+ transport in the distal nephron through multiple mechanisms that include the transcriptional control of epithelial sodium channel (ENaC) and Na+/K+-ATPase subunits. Aldosterone also induces the rapid phosphorylation of Protein Kinase D1 (PKD1). PKD isoforms regulate protein trafficking, by the control of vesicle fission from the trans Golgi network (TGN) through activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ). We report rapid ENaCγ translocation to the plasma membrane after 30min aldosterone treatment in polarized M1 cortical collecting duct cells, which was significantly impaired in PKD1 shRNA-mediated knockdown cells. In PKD1-deficient cells, the ouabain-sensitive current was significantly reduced and Na+/K+-ATPase α and β subunits showed aberrant localization. PKD1 and PI4KIIIβ localize to the TGN, and aldosterone induced an interaction between PKD1 and PI4KIIIβ following aldosterone treatment. This study reveals a novel mechanism for rapid regulation of ENaC and the Na+/K+-ATPase, via directed trafficking through PKD1-PI4KIIIβ signalling at the level of the TGN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.