Abstract

AngII (angiotensin II)-dependent hypertension causes comparable elevations of blood pressure (BP), aldosterone levels, and renal ENaC (epithelial Na+ channel) activity in male and female rodents. Mineralocorticoid receptor (MR) antagonism has a limited antihypertensive effect associated with insufficient suppression of renal ENaC in male rodents with AngII-hypertension. While MR blockade effectively reduces BP in female mice with salt-sensitive and leptin-induced hypertension, MR antagonism has not been studied in female rodents with AngII-hypertension. We hypothesize that overstimulation of renal MR signaling drives redundant ENaC-mediated Na+ reabsorption and BP increase in female rats with AngII-hypertension. We employ a combination of physiological, pharmacological, biochemical, and biophysical approaches to compare the effect of MR inhibitors on BP and ENaC activity in AngII-infused male and female Sprague Dawley rats. MR blockade markedly attenuates AngII-hypertension in female rats but has only a marginal effect in males. Spironolactone increases urinary sodium excretion and urinary sodium-to-potassium ratio in AngII-infused female, but not male, rats. The expression of renal MR and HSD11β2 (11β-hydroxysteroid dehydrogenase type 2) that determines the availability of MR to aldosterone is significantly higher in AngII-infused female rats than in males. ENaC activity is ≈2× lower in spironolactone-treated AngII-infused female rats than in males. Reduced ENaC activity in AngII-infused female rats on spironolactone correlates with increased interaction with ubiquitin ligase Nedd4-2, targeting ENaC for degradation. MR-ENaC axis is the primary determinant of excessive renal sodium reabsorption and an attractive antihypertensive target in female rats with AngII-hypertension, but not in males.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call