Abstract
Sequence analysis of the recently identified class I aldolase of Escherichia coli (dhnA gene product) helped to identify its homologs in Chlamydia trachomatis, Chlamydiophyla pneumoniae and in each of the completely sequenced archaeal genomes. Iterative database searches revealed sequence similarities between the DhnA-family enzymes, deoxyribose phosphate aldolases and bacterial (class II) fructose bisphosphate aldolases and allowed prediction of similar three-dimensional structures (TIM-barrel fold) in all these enzymes. The Schiff base-forming lysyl residues of DhnA and deoxyribose phosphate aldolase are conserved in all members of the DhnA and deoxyribose phosphate aldolase families, indicating that these enzymes share common features with both class I and class II aldolases. The DhnA-family enzymes are predicted to possess an aldolase activity and to play a critical role in sugar biosynthesis in archaea.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.