Abstract
Atomic layer deposition (ALD) has enabled the development of a new technology for fabricating microchannel plates (MCPs) with improved performance that offer transformative benefits to a wide variety of applications. Incom uses a “hollow-core” process for fabricating glass capillary array (GCA) plates consisting of millions of micrometer-sized glass microchannels fused together in a regular pattern. The resistive and secondary electron emissive (SEE) functions necessary for electron amplification are applied to the GCA microchannels by ALD, which – in contrast to conventional MCP manufacturing– enables independent tuning of both resistance and SEE to maximize and customize MCP performance. Incom is currently developing MCPs that operate at cryogenic temperatures and across wide temperature ranges. The resistive layers in both, conventional and ALD-MCPs, exhibit semiconductor-like behavior and therefore a negative thermal coefficient of resistance (TCR): when the MCP is cooled, the resistance increases, and when heated, the resistance drops. Consequently, the resistance of each MCP must be tailored for the intended operating temperature. This sensitivity to temperature changes presents a challenge for many terrestrial and space based applications. The resistivity of the ALD-nanocomposite material can be tuned over a wide range. The material’s (thermo-) electrical properties depend on film thickness, composition, nanostructure, and the chemical nature of the dielectric and metal components. We show how the structure-property relationships developed in this work can be used to design MCPs that operate reliably at cryogenic temperatures. We also present data on how the resistive material’s TCR characteristics can be improved to enable MCPs operating across wider temperature ranges than currently possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.