Abstract
Acetaldehyde, the toxic ethanol (EtOH) metabolite, disrupts intestinal epithelial barrier function. Aldehyde dehydrogenase (ALDH) detoxifies acetaldehyde into acetate. Subpopulations of Asians and Native Americans show polymorphism with loss-of-function mutations in ALDH2. We evaluated the effect of ALDH2 deficiency on EtOH-induced disruption of intestinal epithelial tight junctions and adherens junctions, gut barrier dysfunction, and liver injury. Wild-type and ALDH2-deficient mice were fed EtOH (1 to 6%) in Lieber-DeCarli diet for 4weeks. Gut permeability invivo was measured by plasma-to-luminal flux of FITC-inulin, tight junction and adherens junction integrity was analyzed by confocal microscopy, and liver injury was assessed by the analysis of plasma transaminase activity, histopathology, and liver triglyceride. EtOH feeding elevated colonic mucosal acetaldehyde, which was significantly greater in ALDH2-deficient mice. ALDH2(-/-) mice showed a drastic reduction in the EtOH diet intake. Therefore, this study was continued only in wild-type and ALDH2(+/-) mice. EtOH feeding elevated mucosal inulin permeability in distal colon, but not in proximal colon, ileum, or jejunum of wild-type mice. In ALDH2(+/-) mice, EtOH-induced inulin permeability in distal colon was not only higher than that in wild-type mice, but inulin permeability was also elevated in the proximal colon, ileum, and jejunum. Greater inulin permeability in distal colon of ALDH2(+/-) mice was associated with a more severe redistribution of tight junction and adherens junction proteins from the intercellular junctions. In ALDH2(+/-) mice, but not in wild-type mice, EtOH feeding caused a loss of junctional distribution of tight junction and adherens junction proteins in the ileum. Histopathology, plasma transaminases, and liver triglyceride analyses showed that EtOH-induced liver damage was significantly greater in ALDH2(+/-) mice compared to wild-type mice. These data demonstrate that ALDH2 deficiency enhances EtOH-induced disruption of intestinal epithelial tight junctions, barrier dysfunction, and liver damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.