Abstract

The aim of this study is to elucidate the role of ALDH2B7a during the response to lower temperature in Solanum tuberosum. This gene was found to have altered intragenic DNA methylation status in our previous reports. A total of 18 orthologs of StALDH2B7a were identified in the S. tuberosum genome, which were then divided into 8 aldehyde dehydrogenase (ALDH) subfamilies. The methylation statuses of four intragenic cytosine sites in intron 5 and exon 6 of genomic StALDH2B7a were altered by lower temperature stress, resulting in changes in the expression of StALDH2B7a. Silencing of NbALDH2C4, a homolog of StALDH2B7a in Nicotiana benthamiana, resulted in plants which were sensitive to lower temperature and accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). These data suggested that the expression of StALDH2B7a was upregulated by alteration of its intragenic cytosine methylation status during lower temperature stress, and additional StALDH2B7a enzymes scavenged excess aldehydes resulting from ROS in a response to cold stress in potato. Our study expands the understanding of the mechanisms involved in plant responses to lower temperature, and provides a new gene source to improve potato tolerance to cold stress in northern China, where lower temperature is one of the key limiting factors for crop production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.