Abstract

Abstract The nearby red giant Aldebaran is known to host a gas giant planetary companion from decades of ground-based spectroscopic radial velocity measurements. Using Gaussian Process-based Continuous Auto-Regressive Moving Average models, we show that these historic data also contain evidence of acoustic oscillations in the star itself, and verify this result with further dedicated ground-based spectroscopy using the SONG telescope and space-based photometry with the Kepler Space Telescope. From the frequency of these oscillations we determine the mass of Aldebaran to be 1.16 ± 0.07 , and note that this implies its planet will have been subject to insolation comparable to the Earth for some of the star’s main sequence lifetime. Our approach to sparse, irregularly sampled time series astronomical observations has the potential to unlock asteroseismic measurements for thousands of stars in archival data, and push to lower-mass planets around red giant stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.