Abstract
Chemical and electrochemical instability of the Li metal interface with organic solvent has been a major impediment to use of Li‐metal anodes for next‐generation batteries. Here the character of Li surface degradation and the application of atomic layer deposition (ALD) as a protection layer to suppress the degradation are addressed. Using standard Li foil samples in organic solvent with and without in situ deposited ALD Al2O3 protective layers, results from in situ atomic force microscopy, mass spectrometry (including differential electrochemical mass spectrometry), X‐ray Photoelectron Spectroscopy (XPS), and ex situ scanning electron microscopy/energy dispersive X‐ray spectroscopy are reported. Despite the presence of a thin oxide/hydroxide/carbonate layer on the Li foil surface, degradation readily occurs in organic solvent, particularly at surface features such as ridges. Introduction of the ALD protective layer – deposited directly on this Li foil surface – dramatically suppresses the degradation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.