Abstract

In recent years, lead halide perovskite nanocrystals (PNCs) have presented potential scalable applications in all fields due to their outstanding properties. However, most commonly used PNCs capped with oleic acid (OA) and oleylamine (OAm) suffer from bad stability in polar solutions and thus require various surface protections with organic or inorganic materials. Encapsulation with highly hydrophobic polystyrene (PS) is one of the most efficient ways to protect PNCs; however, the presently used swelling-shrinking strategy faces several challenges, such as weak interaction between PS chains and the surface ligands in nonpolar media causing a low encapsulation efficiency, and serious aggregation of PS particles during the shrinkage process leading to very different particle sizes. Herein, alcohol-stable polyacrylic acid-capped CsPbBr3 PNCs (i.e., PAA-PNCs) are first synthesized and then in situ encapsulated with PS shells by polymerizing styrene monomer on the PNC surfaces in a polar organic solvent (e.g., ethanol). The in situ PS-encapsulated PAA-PNCs (i.e., PAA-PNCs@iPS) exhibit outstanding monodispersity, remarkable water, heat, and UV stability, high fluorescence activity, and color purity. The unique synthesis strategy and good performances of PAA-PNCs@iPS will boost the applications of PNCs in LEDs, biological imaging, and chemosensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.