Abstract

A novel alcohol-soluble n-type conjugated polyelectrolyte (n-CPE) poly-2,5-bis(2-octyldodecyl)-3,6-bis(thiophen-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-2,5-bis[6-(N,N,N-trimethylammonium)hexyl]-3,6-bis(thiophen-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-dione (PDPPNBr) is synthesized for applications as an electron transport layer (ETL) in an inverted polymer solar cells (PSCs) device. Because of the electron-deficient nature of diketopyrrolopyrrole (DPP) backbone and its planar structure, PDPPNBr is endowed with high conductivity and electron mobility. The interfacial dipole moment created by n-CPE PDPPNBr can substantially reduce the work function of ITO and induce a better energy alignment in the device, facilitating electron extraction and decreasing exctions recombination at active layer/cathode interface. As a result, the power conversion efficiency (PCE) of the inverted devices based poly(3-hexylthiophene) (P3HT):(6,6)-phenyl-C61 butyric acid methyl ester (PC61BM) active layer with PDPPNBr as ETL achieves a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call