Abstract

We have expressed in Escherichia coli a cDNA encoding rabbit liver cytochrome P-450IIE1, the ethanol-inducible P-450. The expressed P-450 is located primarily in the bacterial inner cell membrane and comprises 3% of the E. coli total membrane protein. The partially purified cytochrome exhibits a reduced CO difference spectrum with a maximum at 452 nm, characteristic of P-450IIE1, and solubilized membranes or partially purified P-450 preparations reconstituted with NADPH-cytochrome P-450 reductase and phosphatidylcholine catalyze the deethylation of N-nitrosodiethylamine with a turnover number equal to that of purified liver P-450IIE1 (approximately 4.5 nmol/min/nmol of P-450). A modified IIE1 cDNA that encodes a protein lacking amino acids 3-29, a proposed membrane anchor for cytochrome P-450, was also expressed in E. coli and, unexpectedly, the shortened protein was also found to be predominantly located in the bacterial inner membrane rather than the cytosol. Like the full-length protein, this truncated cytochrome has a reduced CO difference spectrum characteristic of P-450IIE1 and is fully active in the deethylation of N-nitrosodiethylamine. These results demonstrate that the NH2-terminal hydrophobic segment is not solely responsible for attachment to the membrane and evidently is not required for proper protein folding or catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call