Abstract

A self-enhancing loop between impaired inhibitory control under alcohol and alcohol consumption has been proposed as a possible mechanism underlying dysfunctional drinking in susceptible people. However, the neural underpinnings of alcohol-induced impairment of inhibitory control are widely unknown. We measured inhibitory control in 50 young adults with a stop-signal task during functional magnetic resonance imaging. In a single-blind placebo-controlled cross-over design, all participants performed the stop-signal task once under alcohol with a breath alcohol concentration of .6 g/kg and once under placebo. In addition, alcohol consumption was assessed with a free-access alcohol self-administration paradigm in the same participants. Inhibitory control was robustly decreased under alcohol compared with placebo, indicated by longer stop-signal reaction times. On the neural level, impaired inhibitory control under alcohol was associated with attenuated brain responses in the right fronto-temporal portion of the inhibition network that supports the attentional capture of infrequent stop-signals and subsequent updating of action plans from response execution to inhibition. Furthermore, the extent of alcohol-induced impairment of inhibitory control predicted free-access alcohol consumption. We suggest that during inhibitory control alcohol affects cognitive processes preceding actual motor inhibition. Under alcohol, decreased brain responses in right fronto-temporal areas might slow down the attentional capture of infrequent stop-signals and subsequent updating of action plans, which leads to impaired inhibitory control. In turn, pronounced alcohol-induced impairment of inhibitory control might enhance alcohol consumption in young adults, which might promote future alcohol problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call