Abstract

It has been demonstrated using CD that ethanol induces important secondary structure changes of beta-lactoglobulin. CD spectra indicate that beta-lactoglobulin secondary structure, which is mainly composed of beta-strands, becomes mostly alpha-helical under the influence of the solvent polarity changes. The midpoint of beta-strand/alpha-helix transition in beta-lactoglobulin is observed at dielectric constant approximately 60 (35% ethanol; v/v). According to CD measurements, the ethanol-dependent secondary structure changes are reversible. The alkylation of lysines epsilon-NH2 in beta-lactoglobulin weakens the central beta-barrel structure, since the beta-strand/alpha-helix transition midpoint of alkylated beta-lactoglobulin is shifted to lower ethanol concentration (25% ethanol; v/v). beta-Lactoglobulin structural changes are triggering the dissociation of the beta-lactoglobulin-retinol complex as judged from complete quenching of its fluorescence in ethanol concentration greater than 30% (v/v). However, in 20% ethanol (v/v), beta-lactoglobulin still retains most of its native secondary structure as shown by CD and, in this condition, one beta-lactoglobulin molecule binds an additional second retinol molecule. This suggests that the highly populated species observed around 20% ethanol (v/v) might represent an intermediate state able to bind two molecules of retinol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.