Abstract

SnO2/CNT nanocomposites were synthesized via microwave-assisted process using SnCl4·5H2O as a starting precursor and UV-treated multi-wall carbon nanotubes (MWCNTs) as scaffolds. The concentration of SnCl4 was varied in the range of 0.01-0.05 M. Effect of precursor concentration on their physical properties and micro structural morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results indicate that the as-synthesized composites are the mixture of two separated phases including SnO2 and MWCNT. SEM images indicate that the surfaces of MWCNT are thoroughly covered with SnO2 nanoparticles. Comparative gas sensing result reveals that the prepared hybrid SnO2/MWCNT composites exhibit much higher sensing sensitivity and recovery property in detecting alcohol gas at room temperature than the bare SnO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.