Abstract
Using an experimental model of airway fibrosis following lung transplantation, we recently showed that chronic alcohol ingestion by donor rats amplifies airway fibrosis in the recipient. Associated with alcohol-mediated amplification of airway fibrosis is increased transforming growth factor beta-1(TGFbeta(1)) and alpha-smooth muscle actin expression. Other studies have shown that interleukin-13 (IL-13) modulates TGFbeta(1) signaling during experimentally-induced airway fibrosis. Therefore, we hypothesized that IL-13 is a component of alcohol-mediated amplification of pro-fibrotic mediators in the alcoholic lung. To test this hypothesis, we analyzed tracheal epithelial cells and type II alveolar cells from control- or alcohol-fed rats, alcohol-treated mouse lung fibroblasts, and human bronchial epithelial cells in vitro for expression of various components of the IL-13 signaling pathway. Signaling via the IL-13 pathway was assessed by measuring levels of phosphorylated signal transducers and activators of transcription-6 (STAT6). In addition, we performed heterotopic tracheal transplantation using control-fed and alcohol-fed donor rats and analyzed tracheal allografts for expression of components of the IL-13 signaling pathway by RT-PCR and immunocytochemical analyses. Interleukin-13 expression was detected in type II alveolar epithelial cells and human bronchial epithelial cells, but not in lung fibroblasts. IL-13 expression was decreased in whole lung and type II cells in response to alcohol exposure. In all cell types analyzed, expression of IL-13 signaling receptor (IL-13R alpha(1)) mRNA was markedly increased. In contrast, mRNA and protein expression of the IL-13 decoy receptor (IL-13R alpha(2)) were decreased in all cells analyzed. Exposure to alcohol also increased STAT6 phosphorylation in response to IL-13 and lipopolysaccharide. Data from multiple cell types in the pulmonary system suggest that IL-13 and its receptors play a role in alcohol-mediated activation of pro-fibrotic pathways. Taken together, these data suggest that alcohol primes the airway for increased IL-13 signaling and subsequent tissue remodeling upon injury such as transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.