Abstract

Co-solvent clustering in complex fluids is fundamental to solution phase processes, influencing speciation, reactivity, and transport. Herein, methanol (MeOH) clustering in supercritical carbon dioxide is explored with pulsed-field gradient, diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR), and molecular dynamics (MD) simulations. Refinements on the application of self-association models to DOSY-NMR experiments on clustering species are presented. Network analysis of MD simulations reveals an elevated stability of cyclic tetrameric clusters across MeOH concentrations, which is consistent with experimental DOSY-NMR molecular cluster distributions calculated with self-association models that include both cooperative cluster assembly and entropic penalties for the formation of large clusters. Simulations also detail the emergence of cluster-assembly and cluster-disassembly reactions that deviate from stepwise monomer addition or removal. This combination of experiment, simulation, and novel analyses facilitates refinement of models that describe co-solvent aggregation with far-reaching impact on the prediction of solution phase properties of complex fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.