Abstract

While it has been known for about 10 years that octadecanol stabilizes Langmuir−Blodgett films of copper tetrakis(cumylphenoxy)phthalocyanine films, the mechanism for this stabilization is not fully understood. To understand more completely the molecular interactions responsible for making octadecanol a good transfer promoter, we studied mixed films' isotherms of tetrakis(cumylphenoxy)phthalocyanine and various saturated alcohols ranging in length from 13 to 24 carbons. By varying mole fraction and alcohol chain length in the various mixed films, a model of interaction was deduced based on pressure-versus-area isotherms obtained from a Langmuir trough. In this model, the aliphatic chains of the alcohols act as a stabilizing, hydrophobic support around phthalocyanine mounds of a preferred stack height. As film pressure increases, the mounds are forced above the alcohol sea, removing favorable ether−water interactions. Depending on chain length, a single or double collapse is observed, suggesting an adjustable physical barrier to forcing the stacks above the alcohols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.