Abstract

Understanding the thermodynamic driving forces underlying any chemical process requires a description of the underlying free energy surface. However, computation of free energies is difficult, often requiring advanced sampling techniques. Moreover, these computations can be further complicated by the evaluation of any long-ranged interactions in the system of interest, such as Coulomb interactions in charged and polar media. Local molecular field theory is a promising approach to avoid many of the conceptual and computational difficulties associated with long-ranged interactions. We present frameworks for performing alchemical free energy calculations and non-Boltzmann sampling with local molecular field theory. We demonstrate that local molecular field theory can be used to perform these free energy calculations with accuracy comparable to traditional methodologies while eliminating the need for explicit treatment of long-ranged interactions in simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.